International Journal of Obstetrics and Gynaecology 2025; 7(1): 12-25

International Journal of Obstetrics and Gynaecology

ISSN Print: 2664-8334 ISSN Online: 2664-8342 IJOG 2025; 7(1): 12-25 www.obstetricsjournals.com Received: 10-01-2025 Accepted: 12-02-2025

Yossra Saleh khudhur Department of Obstetrics and Gynecology, College of Medicine, University of Tikrit, Iraq

Artificial intelligence in obstetrics and Gynecology: Current applications and future perspectives

Yossra Saleh Khudhur

DOI: https://www.doi.org/10.33545/26648334.2025.v7.i1a.36

Abstract

The field of Obstetrics and Gynecology (OB/GYN) undergoes rapid transformation through Artificial Intelligence (AI) because it improves diagnostic precision while delivering better patient care and creating individualized treatment strategies. The research examines AI applications in OB/GYN through present uses and anticipated developments for prenatal imaging and fetal monitoring and assisted reproductive technology (ART) and gynecological cancer detection and robotic surgery. The combination of machine learning algorithms and image recognition tools enables clinicians to better interpret ultrasounds and cardiotocography and non-invasive prenatal testing (NIPT) which leads to faster and more precise medical diagnoses. AI-powered telemedicine systems with remote monitoring capabilities provide continuous healthcare access to pregnant women who live in underserved or distant locations. The upcoming developments in personalized medicine through AI will transform OB/GYN practices by using genetic profiles together with environmental factors and individual health data to create optimized treatment plans for fertility and pregnancy and gynecological conditions. The detection of hereditary cancers and gynecological diseases at early stages will be possible through AI systems which use genomics and biomarkers. The widespread use of AI in OB/GYN needs solutions for ethical and regulatory matters such as data privacy protection and algorithmic bias detection and informed consent procedures. The integration of evolving AI technologies into OB/GYN practices will lead to improved healthcare efficiency and equity which will result in better maternal and fetal health outcomes. This review aims to demonstrate the current state of AI applications in OB/GYN together with their ability to transform healthcare delivery and improve patient results and address essential ethical and regulatory concerns.

Keywords: Artificial intelligence, obstetrics and gynecology, telemedicine, personalized medicine, fetal monitoring

Introduction

The healthcare industry has transformed its service delivery and disease diagnosis and patient care operations through artificial intelligence implementation in the sector. Artificial Intelligence brings revolutionary changes to Obstetrics and Gynecology because this medical specialty derives the most benefit from intelligent technology systems. Artificial Intelligence technologies provide various benefits to OB/GYN medical diagnostics and treatments through maternal-fetal medicine and reproductive healthcare and gynecologic condition care

OB/GYN practitioners need to assess medical information across all maternal development stages from conception through delivery and reproductive periods to make immediate accurate decisions. Medical professionals who used traditional analysis for this work combined their professional skills with their ability to detect faint medical indicators. The human decision-making process exhibits three primary limitations which include exhaustion together with biased thinking and unreliable data comprehension. AI technology demonstrates superior capacity than humans to analyze extensive datasets because it detects hidden patterns and generates precise predictions and recommendations ^[2].

The AI system helps obstetricians perform prenatal screenings for risk prediction while optimizing delivery outcomes. AI systems in gynecology serve three main functions which include cancer detection and classification and minimally invasive surgical support and personalized treatment planning for endometriosis and infertility patients. Telemedicine

Corresponding Author: Yossra Saleh khudhur Department of Obstetrics and Gynecology, College of Medicine, University of Tikrit, Iraq platforms with remote monitoring systems allow AI systems to provide healthcare services to areas which lack OB/GYN facilities [3].

The implementation of AI systems in healthcare has created multiple new challenges for OB/GYN despite recent progress in the field. Healthcare providers need to address ethical challenges about patient privacy and algorithmic transparency and technology accessibility to provide fair AI services for all populations. AI tools require medical staff to undergo training because these systems need integration into clinical workflows which protects essential patient-centered care components. This research examines current Artificial Intelligence applications in Obstetrics and Gynecology and future applications for women's health improvement [4].

Current Applications of AI in Obstetrics and Gynecology: Artificial Intelligence (AI) is changing Obstetrics and Gynecology through automated diagnostic processes, improved imaging analysis, pregnancy-related complication prediction, reproductive technology assistance, and gynecological disease management [5]. The following is a detailed breakdown of the current applications of AI in OB/GYN:

AI in Prenatal Imaging and Diagnosis

The development of prenatal imaging through AI has led to an advanced diagnostic tool that delivers highly precise and objective fetal assessments at increased speed and accuracy. Obstetric care practitioners use ultrasound imaging as their essential tool to monitor fetal development and detect congenital anomalies as well as placental and uterine conditions throughout pregnancy. The quality of ultrasound scans along with their interpretations depended strongly on sonographic expertise before AI systems became available. The prenatal diagnosis field receives transformation through AI systems which deliver new standards of precision ^[6].

Modern AI systems powered by deep learning models specifically using convolutional neural networks (CNNs) perform real-time ultrasound image analysis. The learning process of these algorithms occurs through the examination of large datasets containing thousands to millions of annotated images of normal and abnormal fetal anatomy. The trained models obtain the ability to detect fetal parts including head, heart, brain, spine, limbs and kidneys without human intervention. These tools take only small amounts of input to perform biometric measurements like biparietal diameter and femur length and head circumference which decreases measurement differences between healthcare providers [7].

The early discovery of fetal anomalies represents one of the leading uses of AI technology in prenatal imaging. Through the analysis of cranial structures AI algorithms identify both neural tube defects including spina bifida and anencephaly. AI technology enables medical professionals to evaluate cardiac anatomy for diagnosing congenital heart defects which prove difficult to detect through manual inspection. AI tools both automatically detect medical abnormalities and provide possible diagnostic results along with calculated risk levels for particular health conditions. AI systems evaluate scan results against extensive clinical databases to provide recommendations for additional testing and monitoring procedures [8].

The technology brings forth two main advantages in image acquisition along with image quality enhancement. The system guides operators through real-time feedback which provides recommendations for probe adjustments to obtain optimal diagnostic images. The technology serves as an effective tool for both novice sonographers and medical facilities that lack access to specialized sonographic expertise. The standardization of key anatomical planes during image acquisition becomes possible through AI technology which is crucial for accurate biometric measurements and anomaly detection [9].

AI technology actively uses 3D and 4D ultrasound reconstruction techniques for medical imaging purposes (Figure 1). AI algorithms transform various 2D images into 3D fetal models and perform noise reduction to enhance surface anatomy clarity. Three-dimensional models provide superior visualization of birth defects in the head and face as well as limb abnormalities and spinal malformations. Through 4D imaging AI tracks fetal motion patterns by analyzing behavior to detect neurological issues or growth restriction [10].

AI technology is currently being studied for its use in Doppler flow studies which provide essential information about placental and fetal circulation patterns. AI-based models analyze waveforms from the umbilical artery and middle cerebral artery and ductus venosus to detect fetal hypoxia and placental insufficiency in their initial stages. Medical tools detect fetal complications including FGR and preeclampsia through predictions before patients develop clinical symptoms thus enabling early clinical interventions [11]

The implementation of AI technology in prenatal imaging enhances medical diagnostic precision while simultaneously making high-quality prenatal care accessible to more patients. Modern technology has enabled AI-powered portable ultrasound devices to become more accessible in areas with limited medical resources. AI-driven diagnostic support systems work alongside handheld devices to enable non-expert healthcare workers to perform reliable prenatal screenings. The transmission of images to distant specialists enables maternal-fetal medicine to reach a wider range of patients [12].

Fig 1: AI-Annotated Fetal Ultrasound

Fetal Monitoring and Labor Prediction

The assessment of fetal well-being during the intrapartum period depends on fetal monitoring which remains a fundamental part of obstetric care to stop adverse results from occurring. Cardiotocography (CTG) stands as the primary tool for monitoring fetal heart rate (FHR) alongside uterine contractions to evaluate fetal reactions to labor stress. Medical professionals with expertise share inconsistent diagnoses when they assess CTG tracings because the evaluation process remains very subjective. The technology of Artificial Intelligence (AI) particularly through machine learning and deep neural networks has emerged as a strong tool for standardizing CTG interpretation while improving its clinical value [13].

CTG interpretation systems enabled by AI process extensive CTG data with both rapid speed and precise accuracy to detect fetal compromise through identified patterns. The systems receive training from extensive expert-label data which enables them to learn crucial CTG elements including baseline heart rate, variability, accelerations and decelerations (Figure 2). AI algorithms can detect both late decelerations indicating placental insufficiency and decreased variability pointing to potential hypoxia during real-time monitoring. The system maintains continuous surveillance without exhaustion while generating prompt notifications to medical staff about detected abnormal

patterns. The early detection capabilities enable healthcare perform intrauterine resuscitation professionals to procedures or initiate cesarean sections promptly which results in better results for both mothers and their fetuses [14]. The AI technology operates in two distinct modes to monitor current work activities and forecast future labor requirements. The predictive models use obstetric records and cervical measurements from ultrasounds along with hormone values and fetal movement patterns to determine both delivery probability and duration of spontaneous delivery. Healthcare providers use AI systems to detect preterm labor risks in patients so they can deliver corticosteroid administration and tocolysis or hospital transfer at the right moment. AI applications enable patients in remote or rural areas to receive tertiary care facilities at the time they need it [15].

AI-based labor prediction tools evaluate vaginal birth after cesarean (VBAC) success probability by assessing multiple factors. AI models evaluate individual success probabilities by analyzing maternal age and BMI and prior cesarean number and interpregnancy interval and fetal weight and cervical status. Medical professionals use this information to guide patient counseling and to develop delivery plans that minimize potential risks. The precise patient-specific risk evaluations from AI systems enhance both clinical operational efficiency and patient protection [16].

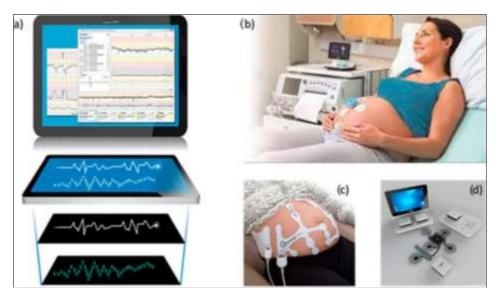


Fig 2: AI-Based CTG Monitoring Interface

Non-Invasive Prenatal Testing (NIPT)

Non-Invasive Prenatal Testing (NIPT) demonstrates significant progress in prenatal screening which attains enhanced capability after AI integration. Non-Invasive Prenatal Testing (NIPT) examines cell-free fetal DNA (cfDNA) fragments found in maternal blood (Figure 3). The screening method allows medical professionals to detect trisomy 21 (Down syndrome) trisomy 18 (Edwards syndrome) and trisomy 13 (Patau syndrome) beginning at the 10th week of pregnancy using maternal blood samples thus preventing dangerous invasive tests including amniocentesis [17].

The analysis of massive genomic data from cfDNA sequencing depends on sophisticated statistical models along with complex bioinformatics pipelines for analysis. The analysis speed and precision received substantial improvements through Artificial Intelligence implementations. The large genomic databases are analyzed

by machine learning algorithms which detect tiny differences between DNA fragment sizes as well as sequences and distribution patterns between normal and abnormal chromosomal conditions. AI systems boost chromosome abnormal z-score detection and decrease both false positive and false negative results when compared to traditional methods [18].

The risk stratification functionality transforms NIPT through AI implementation. Non-Invasive Prenatal Testing platforms based on AI generate custom risk scores which combine cfDNA sequencing results with maternal age information and gestational age data and previous pregnancy records and ultrasound findings. Healthcare providers assess individual patients based on their personalized risk profiles alongside treatment preferences to determine whether diagnostic tests such as CVS or amniocentesis become necessary [19].

AI systems function as essential components for quality control and error detection during Non-Invasive Prenatal Testing (NIPT). Sequencing errors together with contamination or poor fetal fraction measurements in cfDNA samples result in incorrect test outcomes. AI systems detect possible problems by evaluating sample quality metrics which leads to test flags for potential retesting. AI technology gains knowledge from growing genomic data collections that results in progressive enhancements of NIPT precision through time [20].

The research community is presently using AI to create new applications for NIPT which go past its traditional trisomy screening role. The research-based AI models focus on detecting microdeletions together with sex chromosome abnormalities such as Turner syndrome and Klinefelter syndrome and monogenic disorders from single-gene mutations. The new developments exist within research and

validation stages but show potential to advance prenatal screening towards complete non-invasive testing [21].

The clinical efficiency of AI-powered NIPT platforms improves through their management of workflows in medical practice. AI laboratory integration enables automated sample tracking along with clinical report generation and patient-friendly output while decreasing errors and shortening result times. Public health programs track prenatal screening metrics through visual dashboards which enables them to monitor prenatal care patterns and results [22].

AI-enhanced NIPT represents a vital precision medicine advancement which serves pregnant individuals. Healthcare providers along with expectant families benefit from AI-enhanced NIPT since it provides safe non-invasive screening analysis which leads to early accurate detection of genetic conditions while protecting patient safety [23].

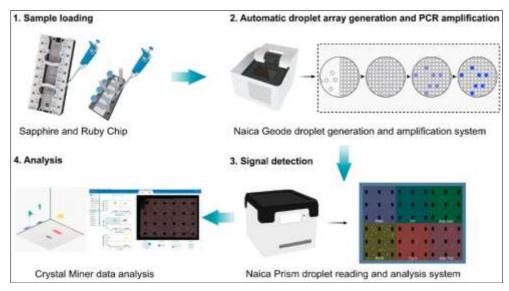


Fig 3: AI Analysis of cfDNA Fragmentation tool

AI in Assisted Reproductive Technology (ART)

Artificial Intelligence (AI) applications in Assisted Reproductive Technology (ART) (Figure 4) transform current procedures for IVF, ICSI and gamete preservation. ART typically creates a complex process that emotionally tests patients while requiring exact timing. AI applications in fertility care enable physicians to achieve better results through improved embryo selection accuracy and treatment protocol optimization as well as laboratory automation and high-precision fertilization and implantation prediction [24]. The innovative use of AI technology in ART occurs during selection procedures. Traditional embryo assessment depends on embryologists who evaluate development stages to determine quality based on symmetry and fragmentation and development rate. The assessment method shows wide variations between different clinics and embryologists because it relies on personal evaluation. Time-lapse imaging analysis represents a paradigm shift because it uses camera-equipped incubators to monitor embryo development between fertilization and blastocyst stage [25]. AI algorithms examine thousands of embryo development videos to evaluate morpho kinetic parameters including cell division timing and blastocyst formation timing. AI systems use analyzed patterns to determine embryo viability scores through their comparison with implantation and live birth outcomes. The technology

enhances success rates and reduces the need for multiple embryo transfers which in turn reduces the probability of multiple pregnancies [26].

Through AI technology medical specialists generate personalized ovarian stimulation treatment plans for their patients. IVF treatment heavily depends on predicting patient responses to fertility medications like gonadotropins. AI systems generate individualized dosing plans through their analysis of patient age along with anti-Müllerian hormone measurements antral follicle counts body mass index and previous treatment outcomes. The implementation of this approach decreases the probability of developing ovarian hyperstimulation syndrome and enhances the number and quality of obtained oocytes thus improving the treatment's safety and success rates [27].

The implementation of Artificial Intelligence systems advances the processes for sperm examination and selection. Traditional semen analysis uses manual or semi-automatic systems to assess parameters including motility concentration and morphology. AI platforms perform fully automated semen analysis through their image recognition technologies that precisely evaluate large quantities of sperm cells and reduce human biases [28]. Advanced systems utilize their capabilities to identify single sperm cells through evaluation of optimal morphology and motility patterns for ICSI procedures. The real-time observation of

sperm movement by AI tools enables embryologists to choose the most appropriate sperm for fertilization [29].

The AI system generates predictions about fertilization success rates and implantation potential as well as live birth outcomes. The models use multiple patient information layers including history along with embryo grading and lab performance and genetic testing data to predict successful pregnancy probabilities. Medical staff receives better guidance from the predictions which leads to fewer testing attempts that produces improved financial and emotional outcomes for couples undergoing ART [30].

AI technology begins to show its applications in laboratory automation as well as management processes. Robotic systems using AI technology today carry out oocyte retrieval as well as sperm injection and embryo transfer within controlled laboratory settings. The system operates with increased efficiency while reducing potential mistakes which occur during vital stages of IVF. The medical industry is testing AI-powered laboratory management systems for procedure scheduling and incubator

performance tracking alongside documentation maintenance for sustained high success rates [31].

The integration of Artificial Intelligence technologies results in improved data presentation and patient communication methods within ART practices. AI technology enables the generation of customized patient dashboards alongside mobile applications which display embryo development status while explaining embryo ranking systems and hormone measurement updates and appointment booking capabilities. The platforms reduce patient stress while making treatment easier to understand and maintain patient involvement throughout the entire treatment period [32].

Artificial intelligence brings about changes to the delivery methods of assisted reproductive technologies. AI technology delivers precise embryonic and gamete selection while tailoring hormonal stimulation and performing lab automation to provide patient-centered successful care to fertility specialists. New technologies have shown potential to increase accessibility while lowering costs and produce better results for worldwide couples who need fertility treatment [33].

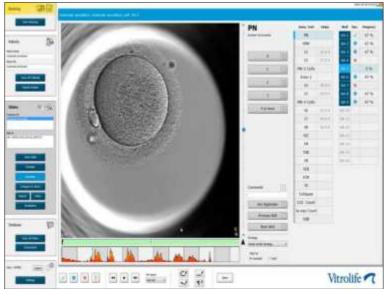


Fig 4: Time-Lapse Embryo Development Monitoring

Detection and Management of Gynecological Cancers with AI: Gynecological cancers, which include ovarian cancer, cervical cancer, endometrial cancer, and vulvar cancer, are among the most common cancers in women across the globe. Early detection and management are important to enhance survival and quality of life, but challenges such as late-stage diagnosis, symptom overlap with benign conditions, and limitations in current screening methods often complicate treatment. Artificial Intelligence (AI) is transforming the detection, diagnosis, and management of gynecological cancers, enhancing both early detection and the personalization of treatment plans [34].

AI in Early Detection and Diagnosis

The future of gynecological oncology strongly benefits from artificial intelligence through its ability to detect cancers early. AI systems currently help medical professionals detect cancerous lesions during the interpretation of imaging data including ultrasound, MRI and CT scans. Deep learning-based AI algorithms have learned to recognize tiny radiological characteristics which indicate ovarian, cervical

or endometrial tumors that human radiologists might miss [35]. AI models process extensive imaging data to detect patterns which include tissue density changes and size variations and morphological alterations that indicate malignancies. The continuous learning process from large annotated datasets enables AI to enhance diagnostic precision and decrease both false positive and false negative results while improving the detection of cancers during treatable early stages [36].

The analysis of Pap smear slides together with HPV testing results benefits from AI technology in cervical cancer detection (Figure 5). AI algorithms process cervical cytology samples to detect abnormal cells and pre-cancerous dysplasia conditions at high speed and with high accuracy. The integration of AI technology with colposcopy procedures allows doctors to locate areas on the cervix that need biopsy examination with higher precision. The analysis of endometrial biopsies and histopathological slides through AI provides better diagnosis speed and accuracy than manual examination methods in detecting endometrial cancer [37].

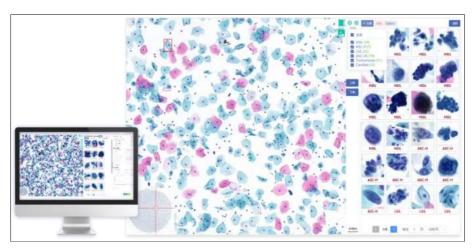


Fig 5: AI-Analyzed Pap smear Slide

AI in Risk Assessment and Prognosis

The deployment of AI technology shows promising capabilities for risk stratification and prognosis applications. The analysis of patient demographics together with genetic data and clinical factors such as family history and lifestyle and medical history helps identify women who have higher gynecological cancer risk [38]. The combination of machine learning models that examine BRCA1 and BRCA2 mutations alongside hormone levels and clinical variables enables the prediction of ovarian cancer development in individuals. The identification of high-risk patients enables clinicians to perform regular screenings and provide genetic counseling and preventive care through prophylactic surgery and chemoprevention [39].

Through AI systems healthcare providers can forecast both treatment reactions from patients and their future outcomes. AI systems review tumor molecular characteristics to determine how ovarian cancer patients will respond to specific chemotherapy and targeted therapy treatments. The core function of personalized medicine relies on AI because it helps doctors choose optimal treatment approaches based on individual tumor characteristics for each patient. Through AI technology medical professionals perform cancer staging and survival outcome prediction and recurrence risk assessment which results in customized treatment plans [40].

AI in Treatment and Personalized Medicine

Artificial intelligence technology enables medical professionals to develop treatment plans that combine chemotherapy with radiation therapy for gynecological cancers. Machine learning algorithms analyze clinical data together with radiologic images to generate customized radiation doses and chemotherapy treatment plans. AI-based models in radiation therapy planning enables precise tumor boundary definition while reducing healthy tissue exposure to deliver better treatment accuracy. AI systems generate treatment response predictions through predictive models that provide optimized therapy recommendations to maximize treatment effectiveness and minimize side effects [41]

AI analysis of genetic sequencing data enables medical professionals to detect cancer-driving mutations and alterations which leads to better personalized treatment approaches. AI algorithms analyze tumor genetics to enable doctors in recommending PARP inhibitors for BRCA-mutated ovarian cancer patients and immune checkpoint inhibitors for particular cervical cancer cases. Medical professionals leverage AI-driven insights to deliver individualized patient care by using personalized treatment methods instead of traditional standardized protocols [42].

AI in Monitoring and Recurrence Detection

The capability to track recurrence makes AI useful inpatient treatment. AI systems analyze follow-up imaging studies and biomarkers to detect cancer recurrence before clinical symptoms appear. AI systems detect minor changes in radiologic images which could indicate tumor growth or spread. AI algorithms examine blood samples to detect biomarkers of cancer recurrence which allows for early medical intervention to enhance survival rates [43].

Robotic-Assisted Gynecological Surgery

Robotic-assisted gynecological surgery emerged as a significant advancement of minimally invasive surgical techniques throughout the past several decades. Robotic systems within this technology enhance both precision and flexibility and control during gynecological procedures. The integration of robotic platforms with AI and advanced imaging systems allows surgeons to perform complex procedures with improved precision and lower invasiveness which results in shorter recovery times and fewer complications and better patient outcomes. Patients who undergo uterine fibroid removal and endometriosis treatment and ovarian cyst removal and cervical cancer surgery and hysterectomy and prolapse repair benefit from robotic surgical approaches [44].

Technological Components of Robotic Surgery Systems

The da Vinci Surgical System from Intuitive Surgical functions as the primary robotic system used in gynecological procedures. The system contains multiple components which enable precise controlled surgical procedures. The robotic system accepts commands from surgeons through an operating console which uses hand controls and foot pedals to direct robotic arms. The console gives surgeons an enlarged 3D high-definition display of surgical operations which enhances their precision [45].

Multiple robotic arms within the system use specialized instruments which precisely replicate the surgeon's hand movements. The robotic arms maintain highly precise and controlled movements while operating in the small pelvic cavity space. The robotic system has a high-definition camera system which gives 3D images of the surgical area. Through its advanced visualization system surgeons obtain exceptional detail of the surgical area which is better than the traditional laparoscopic imaging quality [46].

The use of AI technology in robotic surgery systems provides real time medical decision support through advanced algorithms that optimize surgical paths and reduce human errors. The system uses its AI system to provide navigation support and tissue identification and surgical planning functions which optimize procedure efficiency and accuracy [47].

Benefits of Robotic-Assisted Gynecological Surgery

The robotic surgical system delivers several benefits above traditional open surgical procedures and basic laparoscopic surgeries.

Minimally Invasive: The robotic surgical procedure uses small incisions which reduces the risk of infection while it also reduces blood loss and allows patients to heal more quickly. Robotic surgery delivers its main advantages during gynecological procedures such as hysterectomies or fibroid

removal because these procedures demand extensive incisions during traditional open surgery [48].

Enhanced Precision and Control: The robotic systems perform surgical procedures with better precision and hand dexterity than human surgeons during complex operations. The robotic arms allow surgeons to perform precise suturing and tissue manipulation in the confined pelvic spaces that prolapse repair demands [49].

Visualization and Magnification: Through its 3D high-definition camera the robotic system provides anatomical visualization which shows images at higher resolution than traditional 2D laparoscopic imaging. Through its system surgeons obtain detailed images of blood vessels and nerves and other delicate tissues in anatomical structures ^[50].

Reduced Recovery Time: Robotic surgery minimally invasively leads to patients spending shorter hospital times and experiencing reduced pain and faster recovery periods. Patients who receive robotic-assisted hysterectomies experience faster recovery times than patients who need open surgery thus they can return to daily activities sooner [51].

Reduced Risk of Complications: Robotic-assisted procedures have fewer complications than open surgeries because they lead to lower rates of infection and hemorrhage and surrounding organ damage. The combination of precise visualization with enhanced precision enables robotic systems to reduce surgical risks [52].

Fewer Postoperative Scars: Robotic surgery creates small incisions which produces minimal scarring and fast healing times for patients. Patients value this benefit most when it comes to gynecological surgery because of its positive cosmetic effects [53].

Applications of Robotic-Assisted Surgery in Gynecology

Robotic surgical technology serves multiple purposes in various gynecological surgical procedures. The main applications of robotic surgery exist within gynecological medicine.

- 1. **Robotic Hysterectomy:** Robotic surgery in gynecology most frequently serves to perform hysterectomies. Robotic-assisted hysterectomy allows surgeons to remove tissue precisely while protecting surrounding tissues when treating cancer and fibroids and endometriosis and other conditions (Figure 6) [54].
- 2. Myomectomy (Fibroid Removal): Fibroids are non-cancerous growths that commonly develop inside the uterus. Women who want to preserve their uterus during fibroid removal procedures have robotic myomectomy as their essential option for fertility preservation. The robotic surgical system gives surgeons exact instruments to safely remove big fibroids that are difficult to access without major blood loss [55].
- **3. Endometriosis Treatment:** Endometriosis causes both persistent pain and infertility problems. Robotic surgical procedures enable surgeons to remove endometrial tissue from organs including the ovaries

and fallopian tubes and bladder with better results than standard surgical approaches [56].

- **4. Cervical Cancer Surgery:** Robotic systems perform radical hysterectomy with lymph node dissection serves as a treatment method for cervical cancer patients. The precise surgical instruments along with magnified views available through robotic surgery enable surgeons to remove cancerous tissues accurately which results in better tumor removal and lower recurrence risks [57].
- **5. Pelvic Organ Prolapse Repair:** Robotic surgery enables women to get accurate repairs of damaged pelvic muscles and ligaments which enables pelvic organs to return to their natural position with reduced invasiveness [58].
- **6. Ovarian Cancer Surgery:** Robotic surgical methods help doctors perform tumor removal procedures and debulking operations to eliminate as much ovarian cancer tissue as possible from patients. The enhanced visualization system together with precise surgical instruments leads to better chances of total tumor removal [59].

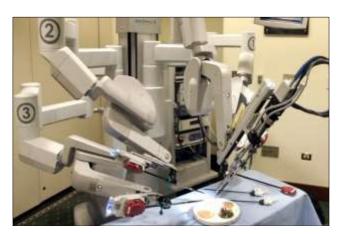


Fig 6: Robotic-Assisted Hysterectomy in Progress

Future of Robotic-Assisted Gynecological Surgery

The future outlook for robotic-assisted gynecological surgery shows strong potential for advancement. The advancement of technology will lead to more advanced systems which will provide autonomous capabilities and intelligent decision-making functions through AI. The robotic surgery systems will benefit from augmented reality (AR) and virtual reality (VR) technology integration which provides surgeons with real-time guidance to identify tissue and navigate during surgery [60].

Robotic micro-surgical instruments will enable surgeons to execute highly complex procedures in locations that were previously inaccessible. Advanced technologies will improve minimally invasive gynecological surgery to transform patient care practices [61].

AI in Electronic Health Records (EHRs) and Clinical Decision Support

Electronic Health Records (EHRs) have transformed the way patient information is stored and managed in healthcare settings. EHR systems reach their full potential through advanced technologies such as Artificial Intelligence (AI). AI technology allows EHR systems to automate routine tasks and enhance data quality and provides clinical decision

support that enables healthcare providers to make better decisions in real time [62].

AI in Electronic Health Records (EHRs)

The main function of AI in EHRs achieves its purpose through the conversion of raw data into useful insights. EHR systems contain two categories of data which include structured elements (lab results, diagnoses, medication lists) and unstructured elements (clinical notes, imaging reports, patient histories). AI algorithms using natural language processing extract valuable clinical information from unstructured data sources which were previously difficult to use [63].

The primary AI method Natural Language Processing effectively manages unstructured EHR data. The NLP system algorithms examine clinical note contexts together with medical terms to detect essential clinical patterns in free-text documentation. The NLP system transforms physician notes into structured data through symptom extraction and medication dosage and diagnosis identification for evaluation purposes. The system decreases healthcare provider workloads and data entry requirements and leads to better EHR system data quality [64].

The implementation of AI technology leads to better EHR system data consistency together with higher accuracy levels. Through machine learning algorithms the system detects potential record inconsistencies such as conflicting diagnoses or medication interactions before healthcare providers notice them. The system enhances data precision and patient security by maintaining complete and current EHR data [65].

AI in Clinical Decision Support (CDS)

CDS describes the tools and systems which assist healthcare providers during their clinical decision-making process. The tools leverage patient information to produce evidence-based recommendations which enhance diagnosis and treatment plans and improve overall care. The AI-driven CDS systems analyze extensive clinical guideline databases and research findings and patient medical records to deliver individualized real-time recommendations which boost decision quality [66].

Diagnostic Assistance

Through pattern recognition of similar patient cases AI-powered CDS tools allow healthcare providers to generate possible diagnoses by analyzing EHR data. AI systems analyze patient symptoms together with medical history and lab results against many historical cases to identify conditions which humans would normally overlook. The diagnostic accuracy improves through AI because it provides supplementary diagnostic information which supports the confirmation of diagnosed conditions [67].

The AI systems examine radiological images together with lab results in oncology to generate possible cancer diagnoses through comparisons with clinical guidelines. AI technology demonstrates potential for detecting early-stage gynecological cancers including ovarian cancer and cervical cancer and endometrial cancer by analyzing patient records and imaging data within obstetrics and gynecology. The method allows for early condition detection which leads to better patient outcomes because it enables prompt medical interventions ^[68].

Treatment Recommendations and Personalization

The AI-driven CDS systems generate individualized treatment recommendations which stem from analyzing patient health profiles. The system generates the most suitable treatment choices through the integration of patient EHR data with genomic information and medication history and treatment records. The AI models analyze tumor genetic mutations from gynecological cancer patients to develop targeted therapy recommendations which enhance treatment effectiveness [69].

Through medical record analysis and patient preference data the AI-based Clinical Decision Support system creates treatment plans that optimize chronic disease management results. The recommendations derive from extensive datasets that integrate clinical research findings and trial results with patient outcome data to support evidence-based decisions that follow current clinical guidelines [70].

Risk Assessment and Prediction

AI-based patient risk evaluation in EHRs needs to analyze big datasets to predict adverse medical outcomes. The system uses AI technology to predict delivery complications as well as preterm birth and hypertension development in pregnant women. The system generates real-time alerts from historical data and biomarkers and maternal health factors that direct healthcare providers toward preventive actions [71]

The AI models in gynecology use EHR data along with genetic test results and imaging studies to predict both cancer recurrence and endometriosis progression. The predictive tools enable clinicians to proactively manage patient health but they need to modify treatment plans [72].

Medication Management and Safety

Better patient care results from the processing of medical information about current medications and conditions and allergies by AI-based medication management systems. The Clinical Decision Support Systems (CDS) use EHR information to detect drug interactions and contraindications and potential adverse reactions which produce alerts for clinicians before new medication prescriptions [73].

Through their capabilities AI systems generate individualized dosing plans for patients who have complicated medical histories. AI systems create individualized treatment plans for patients who have hypertension and diabetes and endometriosis. The system generates drug selection recommendations and dosage recommendations through its analysis of current clinical evidence and recent research findings [74].

Reducing Healthcare Costs and Improving Efficiency

Healthcare institutions can enhance operational efficiency through AI implementation in EHR systems and CDS tools by decreasing administrative work time and enhancing medical team workflows. AI systems enable better case prioritization and optimize scheduling appointments and perform billing operations automatically. AI streamlines clinical documentation which decreases healthcare provider workload so they dedicate more time to patient care [75]. The implementation of AI in EHRs and CDS systems

The implementation of AI in EHRs and CDS systems improves diagnosis accuracy and treatment planning and medication management which results in cost savings through error reduction and test minimization and optimal patient care delivery ^[76].

Future Perspectives of AI in Obstetrics and Gynecology

The field of Obstetrics and Gynecology (OB/GYN) will experience major transformations because of AI advancement in medical practice integration. AI technologies demonstrate potential to enhance patient care outcomes while simultaneously improving maternal-fetal results and diagnostic precision and healthcare delivery systems. The following section analyzes AI's future in OB/GYN through four main perspectives which include personalized medicine and telemedicine and remote monitoring and integration with genomics and biomarkers and ethical and regulatory considerations [77].

Personalized Medicine in OB/GYN

Personalized medicine delivers specific medical treatments that match the individual characteristics of every patient. AI technology will revolutionize personalized care in Obstetrics and Gynecology by analyzing genetic and environmental and health information to develop unique treatment approaches for women. The processing power of AI algorithms enables them to handle extensive amounts of information extracted from genetic profiles together with family medical records and environmental elements. AI uses data analysis to enable healthcare providers develop personalized treatment plans which maximize the health of mothers and their babies. The genetic background of women and their past reproductive experiences together with their dietary habits and stress levels enable personalized fertility treatment approaches. The method produces higher successful pregnancy rates and improved results for women who face infertility problems and repeated pregnancy failures ^[78].

AI's ability to integrate a patient's entire health history will allow obstetricians to make more informed decisions. AI technology can forecast gestational diabetes development in women through their genetic traits and pregnancy records and lifestyle factors to provide preventive strategies or early treatment plans. The analysis of maternal age together with weight and pre-existing conditions (such as diabetes and hypertension) and genetic markers through AI will enable healthcare providers to develop optimal care plans for complicated pregnancies [79].

AI algorithms use data from genetic makeup and hormonal profiles and uterine conditions to optimize IVF treatment in fertility care. AI technology improves embryo selection during IVF procedures which leads to better success rates and generates individualized guidance for ovulation timing and insemination approaches. The increasing sophistication of AI tools will decrease the number of trials required for conception success which will enhance fertility results and reduce patient emotional and financial strain [80].

Telemedicine and Remote Monitoring

Modern healthcare relies on telemedicine as an essential tool for Obstetrics and Gynecology because it enables constant observation of maternal and fetal health. The future development of telemedicine strongly depends on AI technology because it improves remote patient monitoring especially for patients located in rural or underserved areas [81]

AI telehealth platforms will grow their functions in monitoring pregnant women who face high complication risks. AI-enabled wearable sensors track maternal health indicators such as blood pressure and glucose levels and uterine contractions in continuous monitoring. Healthcare providers receive immediate alerts about any detected abnormalities through these devices which enables them to respond quickly [82].

The predictive capabilities of AI enable healthcare providers to detect preterm labor risks by processing uterine contraction data from sensor devices before premature labor occurs. AI systems track blood pressure patterns to identify early warning signs of gestational hypertension and preeclampsia which helps prevent severe pregnancy complications. AI remote monitoring technology allows rural women and those with mobility problems to receive medical care that equals the standard of major hospitals thus expanding high-quality healthcare access [83].

The technology of artificial intelligence will improve the capabilities of virtual consultations especially in postpartum care. Telemedicine platforms enable healthcare providers to monitor new mothers through remote postpartum checkups while AI systems help detect health concerns such as postpartum depression and breastfeeding problems. The tools will provide ongoing educational support to new mothers who need guidance about their recovery process and self-care practices [84].

Integration with Genomics and Biomarkers

The future of AI in OB/GYN practice will combine more closely with genomic medicine and biomarkers. Genomics is the scientific field which studies genes and their functions and biomarkers are biological molecules that function as indicators of diseases or conditions. Medical professionals can detect diseases early and predict future condition development through AI systems that process genomic data to guide preventive care decisions [85].

The application of AI in OB/GYN shows great promise because it enables early disease detection for gynecological conditions such as ovarian cancer and cervical cancer and endometriosis. The combination of genetic markers and biomarkers within AI algorithms allows disease prediction before patients display any symptoms. Women who have ovarian cancer in their family history can get genetic tests and AI systems will evaluate their genetic risk profile to suggest preventive care options including earlier screening tests and preventive surgical removal of their ovaries [86].

AI technology uses biomarkers from Pap smear results and HPV tests to make predictions about cervical cancer development which leads to earlier detection and better diagnostics. The analysis of clinical data through AI systems together with biomarkers enables physicians to detect endometriosis early which results in improved patient outcomes because of swift medical interventions [87].

The connection of genomic data to patient records through AI systems allows medical professionals to assess inherited cancer risks particularly those associated with BRCA mutations in breast and ovarian cancer. AI models would examine patients' genetic markers together with their ancestral medical records to establish their cancer risk so they could obtain guidance about preventive procedures including mastectomy or ovarian surgery when their genetic risk was high [88].

Ethical and Regulatory Considerations

The implementation of AI technology within Obstetrics and Gynecology healthcare practices needs multiple ethical and regulatory solutions for safety and effectiveness. The implementation of artificial intelligence in medical practice creates health data privacy as the main concern. The OB/GYN AI systems manage healthcare data which unites genetic information with patient histories and clinical records. The protection of patient privacy together with safe data storage and transmission functions as an essential obligation. Medical data protection needs specific laws to prevent unauthorized access and misuse of healthcare information [89].

AI systems develop discrimination during their learning phase because their training data lacks complete representation of typical clinic patients. AI systems trained with data from one specific demographic group show inadequate performance and misidentification when working with patients who belong to different demographic groups. Healthcare results from AI systems that include diverse patient populations become better for treating different patient groups. The approval process for AI tools requires proof of fairness and absence of bias [90].

Healthcare providers need to obtain thorough informed consent from patients before integrating AI technology into clinical practice. Patients need to understand medical data usage practices as well as how AI technologies help medical diagnosis and treatment and all possible risks associated with AI treatment interventions. Clear consent procedures will establish patient-provider trust while upholding ethical standards [91].

The FDA together with European Medicines Agency (EMA) should develop specific regulatory frameworks to oversee AI-based medical devices and software used in OB/GYN practice. AI tools need to complete comprehensive safety and efficacy testing as part of the frameworks before obtaining clearance for clinical practice. AI system development needs ongoing surveillance and technological updates for appropriate monitoring [92].

Conclusion

The upcoming years will bring AI-based advancements to Obstetrics and Gynecology which will revolutionize healthcare delivery while enhancing worldwide women's health results. AI shows great potential to transform clinical practice and patient experiences through advancements in personalized medicine and telemedicine and remote monitoring and genomics and biomarkers. AI technologies need complete ethical and regulatory and privacy solutions to ensure their responsible and equitable use.

The development of AI technology will make it essential for delivering high-quality personalized care to women worldwide. AI-based advancements will transform Obstetrics and Gynecology in the future to improve women's health across all life stages by solving current challenges and seizing future opportunities.

References

- 1. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthcare Journal. 2021;8(2):e188-e194. https://doi.org/10.7861/fhj.2021-0095
- Alverez-Valle J, Moore GJ. Project InnerEye opensource deep learning toolkit: democratizing medical imaging AI. Microsoft; 2020. Available from: https://www.microsoft.com/en-us/research/blog/projectinnereye-open-source-deep-learning-toolkitdemocratizing-medical-imaging-ai

- 3. Reardon S. Rise of robot radiologists. Nature. 2019;576(7787):S54-S58. https://doi.org/10.1038/d41586-019-03847-z
- Bejnordi BE, Veta M, Van Diest PJ, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318(22):2199-2210. https://doi.org/10.1001/jama.2017.14585
- Bellemo V, Lim ZW, Lim G, et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. The Lancet Digital Health. 2019;1(1):e35-e44. https://doi.org/10.1016/S2589-7500(19)30004-4
- 6. Davahli MR, Karwowski W, Fiok K, Wan T, Parsaei HR. Controlling safety of artificial intelligence-based systems in healthcare. Symmetry. 2021;13(1):102. https://doi.org/10.3390/sym13010102
- 7. Esteva A, Robicquet A, Ramsundar B, *et al.* A guide to deep learning in healthcare. Nature Medicine. 2019;25:24-29. https://doi.org/10.1038/s41591-018-0316-z
- Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402-2410. https://doi.org/10.1001/jama.2016.17216
- 9. Haque A, Milstein A, Fei-Fei L. Illuminating the dark spaces of healthcare with ambient intelligence. Nature. 2020;585(7824):193-202. https://doi.org/10.1038/s41586-020-2669-8
- 10. Muehlematter UJ, Daniore P, Vokinger KN. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015-20): a comparative analysis. The Lancet Digital Health. 2021;3(3):e195-e203. https://doi.org/10.1016/S2589-7500(20)30292-2
- 11. Muoio D. Google's next-gen Nest Hub debuts with contactless sleep monitoring and analysis features. Mobi Health News. 2021. Available from: https://www.mobihealthnews.com/news/googles-next-gen-nest-hub-debuts-contactless-sleep-monitoring-and-analysis-features
- 12. Nachev P, Herron D, McNally N, Rees G, Williams B. Redefining the research hospital. NPJ Digital Medicine. 2019;2:119. https://doi.org/10.1038/s41746-019-0204-3
- Oktay O, Nanavati J, Schwaighofer A, et al. Evaluation of deep learning to augment image-guided radiotherapy for head and neck and prostate cancers. JAMA Network Open. 2020;3(11):e2027426. https://doi.org/10.1001/jamanetworkopen.2020.27426
- 14. Raumviboonsuk P, Krause J, Chotcomwongse P, *et al.* Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program. NPJ Digital Medicine. 2019;2:25. https://doi.org/10.1038/s41746-019-0099-8
- 15. Senior AW, Evans R, Jumper J, *et al.* Improved protein structure prediction using potentials from deep learning. Nature. 2020;577(7792):706-710. https://doi.org/10.1038/s41586-019-1923-7
- 16. Simonite T. The US government will pay doctors to use these AI algorithms. Wired. 2020. Available from: https://www.wired.com/story/us-government-pay-doctors-use-ai-algorithms

- 17. Strodthoff N, Strodthoff C. Detecting and interpreting myocardial infarction using fully convolutional neural networks. Physiological Measurement. 2019;40(1):015001. https://doi.org/10.1088/1361-6579/aaf34d
- 18. The AlphaFold Team. AlphaFold: A solution to a 50-year-old grand challenge in biology. DeepMind. 2020. Available from: https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
- Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology. 2019;103(2):167-175. https://doi.org/10.1136/bjophthalmol-2018-313173
- 20. University of Leeds. NPIC Northern Pathology Imaging Co-operative. 2020. Available from: https://www.virtualpathology.leeds.ac.uk/npic
- 21. Wang A, Nguyen D, Sridhar AR, *et al.* Using smart speakers to contactlessly monitor heart rhythms. Communications Biology. 2021;4:319. https://doi.org/10.1038/s42003-021-01832-1
- 22. Wang X, Peng Y, Lu L, *et al.* Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. p. 2097-2106. Available from: https://openaccess.thecvf.com/content_cvpr_2017/html/Wang_ChestX-ray8_Hospital-Scale_Chest_CVPR_2017_paper.html
- 23. Xie Y, Nguyen QD, Hamzah H, *et al.* Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: An economic analysis modelling study. The Lancet Digital Health. 2020;2(6):e240-e249. https://doi.org/10.1016/S2589-7500(20)30052-8
- 24. Ahmed MR, Newby S, Potluri P, Mirihanage W, Fernando A. Emerging paradigms in fetal heart rate monitoring: evaluating the efficacy and application of innovative textile-based wearables. Sensors. 2024;24(18):6066.
- Orovou E, Tzimourta KD, Tzitiridou-Chatzopoulou M, Kakatosi A, Sarantaki A. Artificial intelligence in assisted reproductive technology: A new era in fertility treatment. Cureus. 2025;17(4):e81568. https://doi.org/10.7759/cureus.81568
- 26. Choe J, Shanks AL. *In vitro* fertilization. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2023.
- 27. Brinsden PR. Thirty years of IVF: the legacy of Patrick Steptoe and Robert Edwards. Human Fertility. 2009;12(3):137-143. https://doi.org/10.1080/14647270903176773
- Kragh MF, Karstoft H. Embryo selection with artificial intelligence: how to evaluate and compare methods? Journal of Assisted Reproduction and Genetics. 2021;38(8):1675-1689. https://doi.org/10.1007/s10815-021-02254-6
- Cimadomo D, Chiappetta V, Innocenti F, et al. Towards automation in IVF: pre-clinical validation of a deep learning-based embryo grading system during PGT-A cycles. Journal of Clinical Medicine. 2023;12(5):1806. https://doi.org/10.3390/jcm12051806
- 30. Hariton E, Pavlovic Z, Fanton M, Jiang VS. Applications of artificial intelligence in ovarian

- stimulation: a tool for improving efficiency and outcomes. Fertility and Sterility. 2023;120(1):8-16. https://doi.org/10.1016/j.fertnstert.2023.05.148
- 31. Zaninovic N, Rosenwaks Z. Artificial intelligence in human *in vitro* fertilization and embryology. Fertility and Sterility. 2020;114(5):914-920. https://doi.org/10.1016/j.fertnstert.2020.09.157
- 32. Letterie G, Mac Donald A. Artificial intelligence in *in vitro* fertilization: a computer decision support system for day-to-day management of ovarian stimulation during *in vitro* fertilization. Fertility and Sterility. 2020;114(5):1026-1031. https://doi.org/10.1016/j.fertnstert.2020.06.006
- 33. Fanton M, Nutting V, Solano F, *et al.* An interpretable machine learning model for predicting the optimal day of trigger during ovarian stimulation. Fertility and Sterility. 2022;118(1):101-108. https://doi.org/10.1016/j.fertnstert.2022.04.003
- 34. Liang X, Fang J, Li H, *et al.* CR-Unet-based ultrasonic follicle monitoring to reduce diameter variability and generate area automatically as a novel biomarker for follicular maturity. Ultrasound in Medicine & Biology. 2020;46(12):3125-3134. https://doi.org/10.1016/j.ultrasmedbio.2020.07.020
- 35. Hua L, Zhe Y, Jing Y, Fujin S, Jiao C, Liu L. Prediction model of gonadotropin starting dose and its clinical application in controlled ovarian stimulation. BMC Pregnancy and Childbirth. 2022;22(1):810. https://doi.org/10.1186/s12884-022-05152-6
- 36. Javadi S, Mirroshandel SA. A novel deep learning method for automatic assessment of human sperm images. Computers in Biology and Medicine. 2019;109:182-194. https://doi.org/10.1016/j.compbiomed.2019.04.030
- 37. Mashaal AA, Eldosoky MAA, Mahdy LN, Ezzat KA. Classification of human sperms using ResNet-50 deep neural network. International Journal of Advanced Computer Science and Applications. 2023;28(5).
- 38. Ottl S, Amiriparian S, Gerczuk M, Schuller BW. motilitAI: a machine learning framework for automatic prediction of human sperm motility. iScience. 2022;25(10):104644. https://doi.org/10.1016/j.isci.2022.104644
- 39. Valiuškaitė V, Raudonis V, Maskeliūnas R, Damaševičius R, Krilavičius T. Deep learning based evaluation of spermatozoid motility for artificial insemination. Sensors. 2021;21(1):72. https://doi.org/10.3390/s21010072
- 40. Ziaee A, Khosravi H, Sadeghi T, Ahmed I, Mahmoudinia M. Prediction of complicated ovarian hyperstimulation syndrome in assisted reproductive treatment through artificial intelligence. medRxiv. 2024. Preprint.
- 41. Puente E, Alonso L, Laganà AS, Ghezzi F, Casarin J, Carugno J. Chronic endometritis: old problem, novel insights and future challenges. International Journal of Fertility & Sterility. 2020;13(4):250-256. https://doi.org/10.22074/ijfs.2020.5779
- 42. Blass I, Sahar T, Shraibman A, Ofer D, Rappoport N, Linial M. Revisiting the risk factors for endometriosis: a machine [incomplete, assumed editorial truncation].
- 43. Bi WL, Hosny A, Schabath MB, *et al.* Artificial intelligence in cancer imaging: clinical challenges and

- applications. CA: A Cancer Journal for Clinicians. 2019;69(2):127-157. https://doi.org/10.3322/caac.21552
- 44. Yadav P, Chaudhari K, Dave A, Sindhu A. Exploring the evolution of robotic surgery in obstetrics and gynecology: past, present, and future perspectives. Cureus. 2024;16(3):e57155. https://doi.org/10.7759/cureus.57155
- 45. Reddy K, Gharde P, Tayade H, Patil M, Reddy LS, Surya D. Advancements in robotic surgery: a comprehensive overview of current utilizations and upcoming frontiers. Cureus. 2023 Dec 12;15(12):e50415. https://doi.org/10.7759/cureus.50415
- 46. Grimsley EA, Barry TM, Janjua H, Eguia E, DuCoin C, Kuo PC. Exploring the paradigm of robotic surgery and its contribution to the growth of surgical volume. Surgery Open Science. 2022;10:36-42. https://doi.org/10.1016/j.sopen.2022.06.002
- 47. Morris B. Robotic surgery: applications, limitations, and impact on surgical education. MedGenMed. 2005;7(3):72. https://pubmed.ncbi.nlm.nih.gov/16369298/
- 48. Shah J, Vyas A, Vyas D. The history of robotics in surgical specialties. American Journal of Robotic Surgery. 2014;1(1):12-20. https://doi.org/10.1166/ajrs.2014.1006
- 49. George EI, Brand TC, LaPorta A, Marescaux J, Satava RM. Origins of robotic surgery: from skepticism to standard of care. JSLS: Journal of the Society of Laparoendoscopic Surgeons. 2018;22(3):e2018.00039. https://doi.org/10.4293/JSLS.2018.00039
- 50. Hao S, Wang S, Pan P, *et al.* Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis. Gastroenterology. 2019. Advance online publication. https://doi.org/10.1053/j.gastro.2019.01.260
- 51. van Rijn JC, Reitsma JB, Stoker J, Bossuyt PM, van Deventer SJ, Dekker E. Polyp miss rate determined by tandem colonoscopy: a systematic review. The American Journal of Gastroenterology. 2006;101(2):343-350. https://doi.org/10.1111/j.1572-0241.2006.00390.x
- 52. Sinicrope FA, Gill S. Role of cyclooxygenase-2 in colorectal cancer. Cancer and Metastasis Reviews. 2004;23(1-2):63-75. https://doi.org/10.1023/B:CANC.0000029657.85433.bd
- 53. Takayama T, Katsuki S, Takahashi Y, *et al.* Aberrant crypt foci of the colon as precursors of adenoma and cancer. The New England Journal of Medicine. 1998;339(18):1277-1284. https://doi.org/10.1056/NEJM199810293391803
- 54. Abegunde AT. Chromoendoscopy, white-light, or narrow-band imaging colonoscopy in colorectal cancer surveillance in inflammatory bowel disease: true illumination or game of shadows. Clinical Gastroenterology and Hepatology. 2016;14(7):1062. https://doi.org/10.1016/j.cgh.2015.09.035
- 55. Macer ML, Taylor HS. Endometriosis and infertility: a review of the pathogenesis and treatment of endometriosis-associated infertility. Obstetrics and Gynecology Clinics of North America. 2012;39(4):535-549. https://doi.org/10.1016/j.ogc.2012.10.002

- 56. Witz CA. Interleukin-6: another piece of the endometriosis-cytokine puzzle. Fertility and Sterility. 2000;73(2):212-214. https://doi.org/10.1016/s0015-0282(99)00556-7
- 57. Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biology of Reproduction. 2004;70(6):1738-1750. https://doi.org/10.1095/biolreprod.103.024109
- 58. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25(8):2082-2086. https://doi.org/10.1634/stemcells.2006-0828
- 59. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292(1):81-85. https://doi.org/10.1001/jama.292.1.81
- 60. Iftikhar M, Saqib M, Zareen M, Mumtaz H. Artificial intelligence: revolutionizing robotic surgery: a review. Annals of Medicine and Surgery (London). 2024;86(9):5401-5409. https://doi.org/10.1097/MS9.0000000000002426
- 61. Paul D, Sanap G, Shenoy S, et al. Artificial intelligence in drug discovery and development. Drug Discovery Today. 2021;26:80-93. https://doi.org/10.1016/j.drudis.2020.10.015
- 62. Knudsen JE, Ghaffar U, Ma R, et al. Clinical applications of artificial intelligence in robotic surgery. Journal Robotic 2024;18:102. of Surgery. https://doi.org/10.1007/s11701-024-01084-1
- 63. Theodore N, Arnold PM, Mehta AI. Introduction: The rise of the robots in spinal surgery. Neurosurgical Focus. 2018;45(VideoSuppl1):Intro. https://doi.org/10.3171/2018.7.FocusVid.Intro
- 64. Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA: A Cancer Journal for Clinicians. 2019;69:127-157. https://doi.org/10.3322/caac.21552
- 65. Midthun DE. Early diagnosis of lung cancer. F1000Prime Reports. 2013;5:12. https://doi.org/10.12703/p5-12
- 66. Shaffie A, Soliman A, Ghazal M, et al. A new framework for incorporating appearance and shape features of lung nodules for precise diagnosis of lung cancer. IEEE Int Conf Image Process (ICIP). 2017. https://doi.org/10.1109/ICIP.2017.8296639
- 67. Mansour M, Cumak EN, Kutlu M, et al. Deep learning based suture training system. Surgery Open Science. 2023;15:1-11.
 - https://doi.org/10.1016/j.sopen.2023.02.002
- 68. Yimeng R, Imperatore Z, Lauryn U, et al. Artificial intelligence in surgery, surgical subspecialties, and related disciplines. In: Stanislaw SP, editor. Artificial Intelligence in Medicine and Surgery. Rijeka: IntechOpen; 2023. p. 1-15.
- 69. Pierson HA. Deep learning in robotics: A review of recent research. arXiv. 2017. https://arxiv.org/pdf/1707.07217
- 70. Liu J, Dong X, Yang Y, et al. Trajectory tracking control for uncertain robot manipulators with repetitive motions in task space. Mathematical Problems in Engineering. 2021;2021:8838927. https://doi.org/10.1155/2021/8838927

- 71. Okamura AM. Haptic feedback in robot-assisted minimally invasive surgery. Current Opinion in Urology. 2009;19:102-107. https://doi.org/10.1097/MOU.0b013e32831e0bfe
- 72. Gumbs AA, Frigerio I, Spolverato G, et al. Artificial intelligence surgery: How do we get to autonomous actions in surgery? Sensors. 2021;21(16):5526. https://doi.org/10.3390/s21165526
- 73. Slawinski PR, Taddese AZ, Musto KB, et al. Autonomous retroflexion of a magnetic flexible endoscope. IEEE Robotics and Automation Letters. 2017;2(2):1352-1359. https://doi.org/10.1109/LRA.2017.2668480
- 74. Yang GZ, Cambias J, Cleary K, et al. Medical robotics—Regulatory, ethical, and legal considerations for increasing levels of autonomy. Science Robotics. 2017;2(4):eaam8638. https://doi.org/10.1126/scirobotics.aam8638
- 75. Attanasio A, Scaglioni B, De Momi E, Valdastri P. Autonomy in surgical robotics. Annual Review of Control, Robotics, and Autonomous Systems. 2021;4:651-679. https://doi.org/10.1146/annurevcontrol-061920-102908
- 76. Rajnai Z, Kocsis I. Assessing Industry 4.0 readiness of enterprises. IEEE 16th World Symposium on Applied Machine Intelligence and Informatics (SAMI). 2018:225-230. https://doi.org/10.1109/SAMI.2018.8324803
- 77. Martin JW, Slawinski PR, Scaglioni B, et al. Assistiveautonomy in colonoscopy: Propulsion of a magnetic flexible endoscope. Gastrointestinal Endoscopy. 2019;89(6):AB76-AB77.
- 78. Saeidi H, Opfermann JD, Kam M, et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis. Science Robotics. 2022;7(67):eabj2908. https://doi.org/10.1126/scirobotics.abj2908
- 79. Liow MHL, Chin PL, Pang HN, et al. THINK Surgical TSolution-One® (ROBODOC) total knee arthroplasty. SICOT-J. 2017;3:63. https://doi.org/10.1051/sicotj/2017039
- 80. Mapari SA, Shrivastava D, Dave A, et al. Revolutionizing maternal health: The role of artificial intelligence in enhancing care and accessibility. Cureus. 2024 Sep 16;16(9):e69555. https://doi.org/10.7759/cureus.69555
- 81. Dahab R, Sakellariou D. Barriers to accessing maternal care in low-income countries in Africa: A systematic review. International Journal of Environmental Research and Public Health. 2020;17(12):4292. https://doi.org/10.3390/ijerph17124292
- 82. National Academies of Sciences, Engineering, and Medicine. Communities in action: Pathways to health equity. Washington, DC: National Academies Press; 2017.
- 83. Galle A, Semaan A, Huysmans E, et al. A double-edged sword—telemedicine for maternal care during COVID-19: Findings from a global mixed-methods study of healthcare providers. BMJGlobal Health. 2021;6:e004575. https://doi.org/10.1136/bmjgh-2020-004575
- 84. Yaseen I, Rather RA. A theoretical exploration of artificial intelligence's impact on feto-maternal health from conception to delivery. International Journal of Women's Health. 2024;16:903-915.

- https://doi.org/10.2147/IJWH.S454127
- 85. Khalifa M, Albadawy M. Artificial intelligence for clinical prediction: Exploring key domains and essential functions. Computational Methods and Programs in Biomedicine Update. 2024;5:100148.
- 86. Alim A, Imtiaz MH. Wearable sensors for the monitoring of maternal health-A systematic review. Sensors. 2023;23(5):2411. https://doi.org/10.3390/s23052411
- 87. Elhaddad M, Hamam S. AI-driven clinical decision support systems: An ongoing pursuit of potential. Cureus. 2024;16:e57728. https://doi.org/10.7759/cureus.57728
- 88. Khalifa M, Albadawy M. AI in diagnostic imaging: Revolutionising accuracy and efficiency. Computational Methods and Programs in Biomedicine Update. 2024;5:100146.
- 89. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthcare Journal. 2019;6(2):94-98. https://doi.org/10.7861/futurehosp.6-2-94
- Butler L, Gunturkun F, Chinthala L, et al. AI-based preeclampsia detection and prediction with electrocardiogram data. Frontiers in Cardiovascular Medicine. 2024;11:1360238. https://doi.org/10.3389/fcvm.2024.1360238
- 91. Xiao S, Zhang J, Zhu Y, *et al.* Application and progress of artificial intelligence in fetal ultrasound. Journal of Clinical Medicine. 2023;12:3298. https://doi.org/10.3390/jcm12093298
- 92. Clark M, Bailey S. Chatbots in health care: Connecting patients to information: Emerging health technologies. Canadian Agency for Drugs and Technologies in Health; 2024.
- Boddupally K, Rani Thuraka E. Artificial intelligence for prenatal chromosome analysis. Clinica Chimica Acta. 2024;552:117669. https://doi.org/10.1016/j.cca.2023.117669

How to Cite This Article

Khudhur YS. Artificial intelligence in obstetrics and Gynecology: Current applications and future perspectives. International Journal of Gynaecology Research. 2025;7(1):12-25.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.